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ON QUALITATIVE AXIOMATIZATIONS 

FOR PROBABILITY THEORY* 

Abstract. In the literature, there are many axiomatiaations of qualitative probability. 
They all suffer certain defects: either they are too nonspecific and allow nonunique 
quantitative interpretations or am overspecific and rule out cases with unique quanti- 
tative interpretations. In this paper, it is shown that the class of qualitative probability 
structures with nonunique quantitative interpretations is not fiit order axiomatiaable 
and that the class of qualitative probability structures with a unique quantitative 
interpretation is not a flmite, fust order extension of the theory of qualitative prob- 
ability. The idea behind the method of proof is quite general and can be used in other 
measurement situations. 

1. INTRODUCTION 

Qualitative probability, whose formal roots go back to de Finetti [ 19371, is 
concerned with the axiomatizations of order relations, k , on Boolean 
algebras that are compatible with probability functions on the same algebra. 
& is interpreted as “least as likely as”, and “compatibility” here means the 
relevant probability functions P on the Boolean algebra homomorphically 
imbeds 2 into the numerical ordering > on the reals, i.e., if A >, B then 
p(A) > p(B). The goal of the qualitative approach is to provide a sound 
axiomatic basis for the classical quantitative Kolmogorov [ 19331 theory of 
probability in terms of the more direct and basic ordering, k . In addition, 
the qualitative approach provides a powerful method for the scrutinization 
and revelation of underlying assumptions of probability theory, is a link to 
empirical probabilistic concerns, and is a point of departure for the formu- 
lation of alternative probabilistic concepts. 

DEFINITION 1. Let &= (Ep, U, n, X, ~$1 be a Boolean algebra where U is 
the join operation, n the meet operation, X the maximal element, and # the 
minimal element. (We will also use the symbols “U” and “n” to denote the 
union and intersection of sets, and also use the symbol ‘Y,, to denote the 
empty set. The context will make clear which interpretations of these 
symbols are intended.) A probability function for dis a function P from $ 
into [0, l] such that 
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(9 

and 

(ii) 

then 

foreachA,Bin @,ifAnB=$, 

P(A uB)=P(A)+P(B). 0 

The concept of probability function presented in Definition 1 is often 
called a finitely additive probability function since it doesn’t satisfy the 
Kolmogorov axiom of o-additivify, i.e., for each sequence At of elements of 
Zsuch that Ai n Aj = $ for i #i, 

However, from empirical and philosophical points of view, oadditivity is 
the most difficult of the Kolmogorov axioms to justify, and although it 
provides a rich structure for the mathematical theory, it is not of critical 
importance for the empirical and philosophical theory. Thus we follow the 
practice of many others and discard this assumption from our treatment of 
probability theory. 

DEFINITION 2. 9 = ( .%‘, U, n, X, 6, Z 1 is said to be a Boolean aZgebra 
with an ordering relation if and only if (8, U, n, X, $1 is a Boolean algebra 
and k is a reflexive binary relation on 6%‘. Z is called the (qualitative) 
ordering of 9.9 is said to be weakly ordered if and only if k is a weak 
ordering, i.e., if and only if k is a transitive and connected relation. For 
each A, B in 8, we define A -B and A > B as follows: 

and 
A-BiffA k BandB k A, 

A >BiffAk BandnotB>,A. Cl 

DEFINITION 3. Let 9’ = (8, U, n, X, 4, k > be a Boolean algebra with an 
ordering relation. A probability representation for 9 is a probability 
function P for (8, U, n, X, $) such that the following two conditions hold 
foreachA,BinEe: 
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(9 if A > B then P(A) >P(B); 

(ii) if A N B then p(A) = P(B). 

P is said to be a weak probability representation for $3 if and only if P is a 
probability function for (=Y, U, f3, X, $J) and the following two conditions 
hold for all A, B in 8: 

0’) 
(ii’) 

if A > B then p(A) > P(B); 

if A N B then p(A) = P(B). cl 

Weak probability representations naturally arise in probability theory. For 
example, for the closed interval [0, 1 J with the uniform distribution, the 
event [0, f ] is a little more likely to occur than the event [0, f ] - {a}, 
although the probability of both events is 4. Intuitively, the event (4 } has 
some chance - an infinitesimal chance - of occurring. Weak probability 
representations are useful in handling non-Archimedean situations like this. 

The theory of Boolean algebras with an ordering relation is easily 
formulatable in first order predicate calculus. Scott [ 19641 gave a set of 
necessary and sufficient first order conditions forfinite Boolean algebras 
with ordering relations to have probability representations. These conditions, 
called the finite cancellation axioms, are infinite in number and 
it has been shown by Scott and Suppes 119581 that no finite subset of 
them will imply the existence of a probability representation. For infmite 
Boolean algebras with ordering relations, the finite cancellation axioms are 
not sufficient for the existence of a probability representation; some 
Archimedean condition must be added to insure that non-null, infmitesi- 
mally likely events cannot occur. Since Archimedean conditions are not 
axiomatizable in first order languages (Narens [1974b]), there is no 
extension of Scott’s representation theorem to infinite structures. However, 
Narens [1974a] showed that the finite cancellation axioms imply the 
existence of weak probability representations. This latter result shows that 
for the first order theory of Boolean algebras with ordering relations, 
weak probability representation rather than probability representation is the 
natural quantitative concept. These considerations give rise to the following 
definition: 

DEFINITION 4. Let 23’= ($, U, n, X, @, X ) be a Boolean algebra with an 
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ordering relation. 28s said to be a qualitative probability structure if and 
only if it has a weak probability representation. 

The following theorem immediately follows from Narens [1974a] . 

THEOREM A. The class of qualitative probability stmctures is fust order 
ax kmatizable . 

However, if qualitative probability is to be the qualitative version of prob- 
ability functions then the above approach is clearly Inadequate since weak 
probability representations are in general not unique. Axiomatizations of 
more restricted forms of qualitative probability that have unique probability 
representations have been given by de Finetti [ 19371, Koopman [194Oa, b] , 
Savage [ 19541, and Lute [ 19671. All of these axiomatizations use an 
Archimedean condition and are sufficient but not necessary for the exist- 
ence of a unique probability representation. Narens [1974a] gives sufficient 
but not necessary first order axioms for the existence of a unique weak 
probability representation. The problems and methods of obtaining unique- 
ness results in qualitative probability are considered in Cohen [1978]. 

In this paper, we will show that the class of qualitative probability struc- 
tures with nontmique weak probability representations is not first order 
axiomatizable, and that no fmite set of axioms added to a first order 
axiomatization of the theory of qualitative probability structures will yield 
an axiomatization of the class of qualitative probability structures with 
unique representations. 

Z.THETHEOREMS 

We will first construct a sequence of structures based upon subsets of 
[0, l] . This sequence will be used in an important way in the proof of 
Theorem 1. 

Recall that Bore1 subsets of [0, l] form equivalence classes, where two 
Bore1 measurable subsets are considered equivalent if and only if they are 
identical except for a subset of Bore1 measure 0. We will follow the usual 
mathematical practice of ignoring subsets of Bore1 measure 0. This practice, 
which harmlessly confuses notation a little, allows for simpler and more 
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readable notation. Thus, for probabilistic purposes, the Bore1 sets (0,l) and 
[0, I] are considered identical, and the Bore1 sets [0, 11 and [i, l] are 
considered disjoint. 

For each positive integer n and each positive integer k such that 
1 Gk<n,let 

and let W”, U, n, [0, l] ,c$) be the Boolean algebra generated by the Bore1 
setsA;,A:, . . . , A:. Define the binary relation >, n on (4, as follows: for 
eachA,Bin8,, 

A x B iff p(A) > p(B), 

where /J is the Bore1 measure on [0, I] . Let P, be the restriction of cc to SYr,. 
Then 

9” = (Lu,n,wl,hw 

is a weakly ordered qualitative probability structure with probability 
representation P,. It is easy to show that P,(Ai) = l/n for k = 1, . . . , n, 
that P,, is the unique probability representation for 8’“) and that P,, takes 
on the values and only the values k/n for k = 1, . . . , n. Also, it immediately 
follows from the definition of 9” that gn is a substructure of Stn+ r)r . 

I& $= U;: r 81 and k = U;,, k i. Let P be the restriction of the 
Bore1 measure P to 8. Then for each A in 8’, if A E 8’” for some n, then 
P(A) = P,(A). Using this latter result, it is to verify that ~ 

9= M,u,n, [o, i],4, k) 

is a weakly ordered, qualitative probability structure, and that P is a prob- 
ability representation for 37. Also, it is easy to show that P takes on and 
only takes on values of the form k/n where k and n are positive integers 
such that k < n. 

Let (Y be an irrational number and 0 < a < 1. Let Z = [0, cu] , 
( r”, U, fr, [0, l] , @) be the Boolean algebra generated by 47” and {Z}, 
and let (.Y-, U, fr, [0, l] , @) be the Boolean algebra generated 8 and {Z}. 
Then it easily follows that r = u;l r Yi. Let Q be the restriction of the 
Bore1 measure fl on [0, l] to 97 Defme the binary relation k ’ on ras 
follows: for each A, B in .F, 
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A k ’ B’iff Q(A) > Q(B). 
Let 

27’ = (,squ,n,[O,l],@,Z 3. 
Then it easily follows that 23’ is a weakly ordered, qualitative probability 
sfructure and Q is a weak probability representation for22?‘. Let k k be 
the restriction of >t ’ to Yn. Let 

and let Q, be the restriction of Q to Yn. Then.3’~ is a weakly ordered, 
qualitative probability structure, and Q, is a weak representation forS?k, 
and Q,(Z) is the irrational number 01. Furthermore,SL C L??‘(“+ r)t and 
53” = q r .S!?:r (i.e.,SYL is a substructure of2Yo,+rj! and9 is the union 
of the chain of structures& r). 

Observe that Ak,, k = 1, . . . , n, are atomic elements of the Boolean 
algebra 8,) and that in the structure Sn, AZ -A’, for allj, k such that 
1 <j, k Q n. It easily follows from this that all weak probability represen- 
tations for A!?, must be identical, i.e., that P,, is the unique weak probability 
representation for 2Vn. Since 8 = q= r Ep i and for each positive integer n, 
53$ is a substructure of 3, it follows that P is the unique weak probability 
representation for 28. 

For each positive integer n,.SL does not have a unique probability 
representation. There are many ways to show this, but perhaps the easiest 
for our purposes is to appeal to the method given in Chapter 9 of Krantz 
et al. [ 19711 for constructing probability representations for finite 
qualitative probability structures. This method (which uses solutions to 
finite sets of homogeneous linear inequalities) allows one to always con- 
struct for finite qualitative probability structures probability representations 
that take on only rational values, and since Q, takes on the irrational value 
OL, there must be at least two distinct probability representations forS$. 

However, the infinite structures does have a unique probability 
representation. This can easily be seen by observing that P is the unique 
weak probability representation for L2? and P takes on every rational value in 
[0, l] . Thus for each event B in Y, there exist sequences of events Bi, Ci 
in B such that lh[P(Bi) - P(Ci)] = 0 and Bi >, ’ B X’ Ci, and it there- 
fore follows that for each weak probability representation R of2?‘, 
R(B) = lim P(Bi), and thus the uniqueness of R follows from the uniqueness 
OfP. 
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Letting 28 = Qand9 Lr = %‘k, we summarize these results in the 
following lemma: 

LEMMA 1. There exists a weak& ordered qualitative probability structure 
Q and a sequence of weakly ordered qualitattve probability structures gk 
such that the following four conditions hold for all positive integers i and j: 

(0 ifi>jthenQiZS?i; 

@I w= u;=, ff,; 
(iii) 

(iv) 

each SYk has a nonunique weak probability representation; 

Qhas a unique weak probability representation that takes 
on all rational values in [0, 1 ] . 

We are now in the position to prove the main result: 

THEOREM 1. The class of qualitative probabilitv structures with non- 
unique weak probability representations is not first order axiomatizable. 

Proof. Suppose A is a set of first order axioms for the class of qualitative 
probability structures with nonunique weak probability representations. A 
contradiction will be shown. Let E4 and QI be as in Lemma 1. Let 22 be a 
nonprincipal ultrafilter of the Boolean algebra of subsets of the positive 
integers,I+, and let * Qbe the #-ultraproduct of ( g~;)~~r+. Then ‘Fi 
satisfies all the axioms of A for each i in I+, by kos’s Theorem, *Q has two 
distinct weak probability representations. Similarly, *Q is weakly ordered 
since by hypothesis Qi weakly ordered for each i in I+. 

L.et 
Q = w,u,n,x,$J S) 9 -- 9 

*g = <*q , *u, *n,x, 4, * x 1, 

and let d, e, f be arbitrary elements of 9. Let id be the function from I+ 
into v such that for all j in I+, &d(j) = d. Since gi E pi+ i for all i in I+ 
and g = Uy= r Vi, it follows that d, e, and f are in ‘&‘, for all but finitely 
manyjinI+.Itals~followsthatdUe=fifandonlyifdU~e=fforall 
but finitely many j in I+. Thus since I is a non-principal ultrafilter, it is 
easy to establish that the function F from g into ‘Q defined by 
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F(c) = the P’equivalence class that contains L, 

is an isomorphic imbedding of Q into * Q . 
Since the previous paragraph establishes that Q is isomorphically 

imbeddable in *Q, we may assume, without loss of generality, that @is a 
substructure of “Q. By hypothesis, let R be the unique weak probability 
representation of Q, and let R r and Rz be two distinct weak probability 
representations for *Q. Since R is unique, R = R 1 t $5 = R2 t B . Since 
R r # R2, let a in *9 be such that R r(a) f R&z). Without loss of generality, 
suppose RI(u) > R&z). Since by hypothesis R takes on all rational values in 
[0, I], let b in @‘be such that R,(i) > R(b) > R,(a). Since R,(b) = R(b) = 
R2(b), it then follows that 

(1) RI@) >RI@) 
and 

(2) R2@) >Rz(a). 

Since * z is a weak ordering on V and RI and R2 are weak probability 
representations, it follows from Equation (1) that II * > b and from 
Equation (2) that b *>II, which is impossible. Cl 

THEOREM 2. Let r be a set of first order axioms for the theory of 
qualitative probability structures (e.g., F be the set of Bite cancellation 
axioms of Scott [ 19641). Then there does not exist a fiite set of first 
order axioms Z such that F U Z is an wiomatization for the class of 
qualitative probability structures with unique weak probability 
representations. 

Proof. Suppose Z is finite and I’ U Z is a first order axiomatization for 
the theory of qualitative probability structures with unique weak probability 
representations. A contradiction will be shown. Since Z is finite, let 
x={el,.. . , 0,). Let f3 be the conjunction of 8 r , . . . ,8,, i.e., 
e=el h.. . A 8,. Then r U (le ) axiomatizes the theory of qualitative 
probability structures with nonunique weak probability representations, 
and this is impossible by Theorem 1. cl 

3. DISCUSSION 

Qualitative axiomatizations of quantitative models is an important part of 
measurement theory, and in fact Krantz, Lute, Suppes, and Tversky’s 
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Foundations of Measurement consists almost entirely of such axiomati- 
zations. Since uniqueness of quantitative interpretations also plays a central 
role in measurement theory, axiomatic problems involving uniqueness have 
intrinsic theoretical interest. The method of proof for Theorems 1 and 2 
does not rely in an essential way upon probabilistic concerns; rather it is the 
convergence and uniqueness/nonuniqueness properties of the sequence of 
structures mentioned in Lemma 1 that allow the proofs to work. Since there 
are other important measurement situations where sequences with such 
properties can be found, the method of proof presented in this paper can be 
extended to these other situations and analogous theorems obtained. 
University of Chlifomia, Irvine 
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